Formation of high-field magnetic white dwarfs from common envelopes.

نویسندگان

  • Jason Nordhaus
  • Sarah Wellons
  • David S Spiegel
  • Brian D Metzger
  • Eric G Blackman
چکیده

The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary Star Origin of High Field Magnetic White Dwarfs

White dwarfs with surface magnetic fields in excess of 1MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1,253 white dwarfs with a detached low-mass main-sequence companion are identified in the Sloan Digital Sky Survey but none of these is observed to show evidence for Zeeman splitting of hydrogen lines associated with a magnetic field in ...

متن کامل

Stable magnetic equilibria and their evolution in the upper main sequence, white dwarfs, and neutron stars

Context. Long-lived, large-scale magnetic field configurations exist in upper main sequence, white dwarf, and neutron stars. Externally, these fields have a strong dipolar component, while their internal structure and evolution are uncertain but highly relevant to several problems in stellar and high-energy astrophysics. Aims. We discuss the main properties expected for the stable magnetic conf...

متن کامل

Thermonuclear fusion in dense stars

We study the plasma correlation effects on nonresonant thermonuclear reactions of carbon and oxygen in the interiors of white dwarfs and liquid envelopes of neutron stars. We examine the effects of electron screening on thermodynamic enhancement of thermonuclear reactions in dense plasmas beyond the linear mixing rule. Using these improved enhancement factors, we calculate carbon and oxygen ign...

متن کامل

A new magnetic white dwarf: PG 2329+267

We have discovered that the white dwarf PG 2329+267 is magnetic, and, assuming a centred dipole structure, has a dipole magnetic field strength of approximately 2.3 MG. This makes it one of only approximately 4 per cent of isolated white dwarfs with a detectable magnetic field. Linear Zeeman splitting, as well as quadratic Zeeman shifts, is evident in the hydrogen Balmer sequence and circular s...

متن کامل

Formation and evolution of compact binaries in globular clusters: I. Binaries with white dwarfs

In this paper, the first of a series, we study the stellar dynamical and evolutionary processes leading to the formation of compact binaries containing white dwarfs in dense globular clusters. We examine the processes leading to the creation of X-ray binaries such as cataclysmic variables and AM CVn systems. Using numerical simulations, we identify the dominant formation channels and we predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 8  شماره 

صفحات  -

تاریخ انتشار 2011